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Relative positions of limit cycles in the continuous
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To estimate the relative position of limit cycles for a continuous culture vessel is
always useful in the qualitative study of the system. In this paper, we construct an annu-
lar region containing all the limit cycles for the chemostat with variable yield model that
was studied by Huang (J. Math. Chem. 5, 151–166. 1990), and by Pilyugin and Walt-
man (Math. Biosci. 182, 151–166. 2003).
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1. Introduction

Modeling microbial growth is an interesting problem in mathematical
biology and theoretical ecology. One particular class of model is deterministic
models of microbial growth in the continuous culture vessel (or bioreactor, or
chemostat [1,2]). The model is

x ′ = x(p(S) − D),

S ′ = (S0 − S)D − x

γ
p(S), (1)

where S(t) and x(t) denote the concentrations of the nutrient and the microbial
biomass, respectively; S0 denotes the feed concentration of the nutrient and D

the volumetric dilution rate (flow rate/volume). The function p(S) denotes the
microbial growth rate and a typical choice for p is the Monod kinetics, p(S) =
mS/(a + S). The stoichiometric yield coefficient γ denotes the ratio of microbial
biomass produced to the mass of the nutrient consumed.

The dynamics of the model (1) was studied by many authors [3–10]. For
example, Crooke et al. proved that the model could not exhibit any periodic
solution if the stoichiometric yield coefficient in the model is constant [9]. There
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are also some experiments that indicate that the oscillatory behavior in the che-
mostat does exist [6,7,9]. The studies show that if the yield coefficient increases
linearly with substrate concentration, then for certain parameter range, the stable
rest state may undergo the Hopf bifurcation and a limit cycle may appear.

Now the fact that the yield coefficient may depend on the substrate concen-
tration has been well established by experiments (see, for instance, Herbert [11],
Panikov [12], Pirt [13], Caperon [14], Droop [15], Minkevich et al. [16], Powell
[17], Tang et al. [18], Veldkamp [19], Matin and Veldkamp [20], Clark [21]). But,
most of the authors model the constant yield by a linear function [9,10]

γ (S) = c1 + c2S, c1, c2 > 0.

Recently, Pilyugin and Waltman [22] introduced a more general class of func-
tions, and derived the model:

dS

dt
= (S0 − S)D − x

p(S)

γ (S)
, S(0) � 0,

dx

dt
= x(p(S) − D1), x(0) � 0. (2)

Here as usual, the concentration is measured in units of S0, and time in unites of
1/D. If we rescale x by a factor 1/γ (0), and use a new p(S) replaces p(S0S)/D,
the new γ (S) replaces γ (S0S)/γ (0), and the new D replaces D1/D, we then have
the following generalized model:

dx

dt
= x(p(S) − D), x(0) � 0,

dS

dt
= 1 − S − x

p(S)

γ (S)
, S(0) � 0. (3)

Assuming

p(S) ∈ C1[0, +∞), p(0) = 0, p′(S) > 0,

γ (S) ∈ C1[0, +∞), γ (S) > 0, γ (0) = 1,

it was shown in ref. 22 that the model (3) exhibits sustained oscillations, and it
may undergo a sub-critical Hopf bifurcation and feature at least two limit cycles.

It is interesting to notice that the model (3) was first studied 13 year ago by
Huang in a continuous fermentation model [23]. The equations there are

dx

dt
= x(g(y) − 1),

dy

dt
= 1 − y − g(y)

F (y)
x, (4)



L. Zhu and X. Huang / Relative positions of limit cycles 121

where x and y are corresponding to S and x in (3), g(y) and F(y) to p(S) and
γ (S).

Let E(x∗, y∗) = ((1 − y∗)F (y∗), g−1(1)). Assume g(1) > 1,then E(x∗, y∗)
is the only equilibrium point in the positive quadrant. By qualitative analysis of
differential equations [23] proved the following theorem:

Theorem A. Assume g(1) > 1, if

1 + x∗ d
dy

( g

F

) ∣∣∣∣y=y∗ > 0, (5)

then the equilibrium point E(x∗, y∗) of the system (4) is stable; if

1 + x∗ d
dy

( g

F

) ∣∣∣∣y=y∗ < 0, (6)

then E(x∗, y∗) is unstable and there exists at least one limit cycle in (4) surround-
ing the equilibrium point.

Before we end this introduction we would like to emphasize the concept of
limit cycles. The problem of limit cycles is always an attractive topic in mathe-
matics since it was first appeared in the very famous papers of Poincare (1881,
1882, 1885, 1886). Even in the beginning of the 20th century, David Hilbert,
at the Second International Congress of Mathematicians, Paris 1900, made the
famous speech entitled: “Mathematical Problems.” One of his 23 problems, the
16th, is on limit cycles – finding the maximum number of limit cycles of the
differential equations:

dx

dt
= Xn(x, y),

dy

dt
= Yn(x, y), (En)

where, xn(x, y) and yn(x, y)are polynomials whose degrees are not greater than
n. Then in the 1930s’, van der Pol and Andronov showed that the closed orbit
in the phase plane of a self-sustained oscillation occurring in a vacuum tube cir-
cuit was a limit cycle as considered by Poincaré. After that, the existence, nonex-
istence, uniqueness and other properties of limit cycles have been studied exten-
sively by mathematicians and scientists (see, for example, Ye et al. [24]). Now,
the existence of limit cycles in the models of microbial growth in the continuous
culture vessel is another interesting example in sciences.

Usually, the study of limit cycles includes two aspects: one is the existence,
stability and instability, number and relative positions of limit cycles, and the
other is the creating and disappearing of limit cycles along with the varying of
the parameters in the system (e.g. bifurcation). For the exact number of limit
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cycles and their relative positions, the known results are not many because deter-
mining the number and positions of limit cycles is not easy. That is the reason
why the 16th Hilbert problem still remains open even for the case when n = 2
after 100 years, even some important progress has been made recently [25–28].

In this paper, we are going to construct an annular region containing all the
limit cycles of the system (3). This region is different from the one of [23] both in
the way it is constructed and in the relative position. The estimation of the rela-
tive position of the limit cycles in the model is obviously useful and important in
analyzing the oscillation phenomenon in the continuous culture vessel with vari-
able yield. For a further study on the topic of limit cycles, the references [29–37]
are always useful.

2. Main theorems

Let � = {
(x, S) ∈ R2 |x, S > 0

}
be the positive quadrant, and assume

p(S) ∈ C1[0, ∞), p(0) = 0, p′(S) > 0,

γ (S) ∈ C1[0, ∞), γ (0) = 1, γ (S) > 0.

The unique equilibrium point in � E(x∗, y∗) is given with the condition p(1) >

D, by

x∗ = (1 − S∗)γ (S∗)/D, S∗ = p−1(D).

In order to prove the main theorems, we need the following Lemma 1.

Lemma 1. Every solution in � of the following system

dx

dt
= x∗(p(S) − D),

dS

dt
= 1 − S∗ − x

p(S∗)
γ (S∗)

(7)

is periodic.
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Proof. Let (x0, S0) �= (x∗, S∗) be an initial point in �. The corresponding tra-
jectory � = (x(t), S(t)) of the system (7) satisfies

∫ x

x0

(
1 − S∗ − x

p(x∗)
γ (S∗)

)
dx =

∫ S

S0

x∗(p(S) − D)dS. (8)

Suppose � is not a closed orbit. There must be two points (x(t1), S(t1)),

(x(t2), S(t2)) with t1 < t2 such that x(t1) = x(t2) = x∗, and S(t1), S(t2) < S∗.
Let us assume, without loss of generality, S(t1) < S(t2). Then

∫ S(t2)

S0

x∗(p(S) − D)dS =
∫ S(t1)

S0

x∗(p(S) − D)+
∫ S(t2)

S(t1)

x∗(p(S) − D)dS. (9)

Since x∗(p(S) − D) < 0 for S < S∗,
∫ S(t2)

S0

x∗(p(S) − D)dS <

∫ S(t1)

S0

x∗(p(S) − D)dS. (10)

However, it follows
∫ x∗

x0

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
dx =

∫ S(t2)

S0

x∗(p(S) − D)dS

<

∫ S(t1)

S0

x∗(p(S) − D)dS =
∫ x∗

x0

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
dx. (11)

This is a designed contradiction which ends the proof of Lemma 1.

Theorem 1. Let S̄ = min{S|(1 − S)
γ (S)

p(S)
= (1 − S∗) γ (S∗)

p(S∗) , S ≥ S∗}, and

A = {(x, S)|x∗ � x � (1 − S)
γ (S)

p(S)
, S∗ � S � S̄}.

If, for 0 < S � S̄,
(

1 − S − x
p(S)

γ (S)

)
x∗(p(S) − D) �

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
x(p(S) − D), (12)

then A is inside of all the limit cycles of the system (3).

Proof. Suppose L is a limit cycle of the system (3) surrounding the equilibrium
point E(x∗, S∗). By the phase portrait analysis L intersects the curve 1 − S −
x p(S)/γ (S) = 0 exactly at two points. Consider the system (7) with the initial
condition x(0) = x0, S(0) = S0. Lemma 1 implies that all the solutions of the
system (7) are periodic. Since each closed orbit has two intersection points with
S = S∗, suppose one is Qi(xi, Si)and the other is

σ(Qi) = Qiσ (xiσ , Siσ ),
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Figure 1. It is impossible that l(Q2σ ) < l(Q1).

where Si = Siσ = S∗. Clearly σ(Qiσ ) = σ(σ(Qi)) = Qi . It is easy to see that the
distance from Qi(xi, Si) to (0, S∗) is xi , denoted as l(Qi). We can see that the
bigger the l(Qi), the smaller the l(σ (Qi)).

According to the definition of A, if S∗ = S̄, then the set A has only one
point (x∗, S∗), which is, of course, inside of L. Now suppose S∗ < S. By the fact
that if (x∗, S) is inside of L, then so is A, we suppose (x∗, S) is not inside of L.
Consider two vectors in the space:

V1 =
(

1 − S − x
p(S)

γ (S)
, x(p(S) − D), 0

)
,

V2 =
(

1 − S∗ − x
p(S∗)
γ (S∗)

, x∗(p(S) − D), 0
)

(13)

and their vector product

V1 × V2 =
(

0, 0,

((
1 − S − x

p(S)

γ (S)

)
x∗−

(
1 − S∗−x

p(S∗)
γ (S∗)

)
x

)
(p(S)−D)

)
. (14)

Since 1 − S − x (p(S)/γ (S)) > 1 − S∗ − x (p(S∗)/γ (S∗)) for S∗ < S < S, thus
x∗ � x for (x, S) ∈ A.

By (12), we have
(

1 − S − x
p(S)

γ (S)

)
x∗(p(S) − D) −

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
x(p(S) − D) � 0 (15)

for 0 < S � S. Hence the flow of the system (3) is always directed outwards with
respect to the flow of the system (7).
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Let Q1(x1, S1) and Q2(x2, S2) be the two intersection points of L with
S = S∗. Consider the periodic orbit of the system (7) passing Q1(x1, S1), and
the corresponding intersection point with S = S∗: σ(Q1) = Q1σ (x1σ , S1σ ). (see
figure 1)

Compare the trajectories of the two closed orbits for S < S∗.

l(Q1σ ) < l(Q2). (16)

Then, for the case when S >S∗, consider the trajectories of the closed orbits ini-
tiating at Q2(x2, S2). Since σ(Q1) = Q1σ (x1σ , S1σ ), and we have

l(Q2σ ) < l(Q1). (17)

Q2σ is on the right of Q1 on the line S = S∗. But it is impossible since two peri-
odic orbits of the system (7) can not intersect with each other by the uniqueness
of solutions. We can also think in this way. Consider the two periodic orbits of
system (7) initiating at Q2σ andQ1, respectively. If the inequality (17) holds, then

l(σ (Q2σ )) > l(σ (Q1)),

hence

l(Q2) > l(Q1σ ). (18)

This is a contradiction to (16), and the proof of Theorem 1 is completed.

Theorem 2. Let δ > 0 be a constant such that

dx

dt
+ δ

dS

dt

∣∣∣∣
x=δ(1−S)

� 0. (19)

Then all the limit cycles of the system (3) are inside of the region B, where B =
B1

–hB2, and

B1 = {
(x, S)| 0 � S � S∗, 0 � x � δ(1 − S∗)

}
,

B2 = {
(x, S)| S∗ � S � 1, 0 � x � δ(1 − S)

}
. (20)

Proof. Define vectors V and T as

V =
(

dx

dt
,

dS

dt
, 0

)
,

T = (t1, −1, 0) =
{

(0, −1, 0) if 0 � S � S∗, x = δ(1 − S∗),
(δ, −1.0) if S∗ � S � 1, x = δ(1 − S).

(21)
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Since T × V =
(

0, 0,
dx

dt
+ t1

dS

dt

)
, if we can prove, for 0 � S � 1

dx

dt
+ t1

dS

dt
� 0, (22)

then B is invariant under (3).
By (21) when 0 � S � S∗, t1 = 0, then

dx

dt
+ t1

dS

dt
= x (p(S) − D) < 0, (23)

since p(S) − D < 0, for 0 � S � S∗.
And, when S∗ < S � 1, t1 = δ, by (17)

dx

dt
+ t1

dS

dt
=

(
dx

dt
+ δ

dS

dt

)∣∣∣∣
x=δ(1+S)

�0. (24)

Therefore, B contains all the limit cycles of the system (3) since B is invariant
under (3).

Combine theorems 1 and 2, we have

Theorem 3. If p(1)>D, 1 + x∗(d/dS) (p(S)/γ (S))|S=S∗ < 0, and if (12) and (19)
hold, then all the limit cycles of the system (3) are in the annular region B\A.

3. Discussion

Let us conclude the article by the following remarks.

Remark 1. The sets A and B are easily constructed and the region is explicitly
computable. Thus, the theorems are practically useful.

Remark 2. It is not difficult to see that the set A can be extended to

A′ = {(x, S)| x∗ � x � (1 − SM)
γ (SM)

p(SM)
, S∗ � S � S, p(S) − D > 0,

1 − S − x
p(S)

γ (S)
� 0 for SM � S � S

}
, (25)

where

(1 − SM)
γ (SM)

p(SM)
= max

S∗�S�S̄

{
(1 − S)

γ (S)

p(S)

}
. (26)

Remark 3. By a variable transformation, the system (3) can be rewritten as (4),
then follow the same argument as in [23], the set B in Theorems 2 and 3 can be
replaced by a Bendixson annular region.
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Remark 4. If p(S) = aS

b + S
, γ (S) = A + CS, then the system (3) is reduced to

dx

dt
= x

(
aS

b + S
− 1

)
,

dS

dt
= 1 − S − axS

(b + S)(A + CS)
,

(27)

which was first studied in [8,9], and we have similar result as in Theorem A.
It is also noticed that there are some typing mistake in ref. 23. For example,
in both (3.4) (p. 290) and theorem 3.1 (p. 291) the condition for g(1) should
be >1, not < 1.

Remark 5. The condition (10) in Theorem 1 is relevant to the condition (6) in
theorem A. For example, if let

R(x, S) =
(

1 − S∗ − x
p(S∗)
γ (S∗)

)
x −

(
1 − S − x

p(S)

γ (S)

)
x∗

=
(

(S − S∗) + x

(
p(S)

γ (S)
− p(S∗)

γ (S∗)

))
x∗ +

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
(x − x∗).

(28)

It is easy to see that

R(x, S∗) =
(

1 − S∗ − x
p(S∗)
γ (S∗)

)
(x − x∗) < 0, (29)

and

dR

dS
= 1 + x d

dS

(
p(S)

γ (S)

)
. (30)

If we assume that dR/dS < 0, for S∗ � S � S̄, then we have

R(x, S) � R(x, S∗) < 0. (31)

Since p(S) − D > 0 for S∗ � S � S̄, we have
(

1 − S − x
p(S)

γ (S)

)
x∗(p(S) − D) −

(
1 − S∗ − x

p(S∗)
γ (S∗)

)
x(p(S) − D) > 0

for S∗ � S � S̄. The condition dR/dS < 0, for S∗ � S � S̄ is relevant to the con-

dition (6), 1 + x∗(d/dS)

(
p

γ

)∣∣∣∣
S=S∗

< 0. Similarly, we can analysis the case when

0�S �S∗.



128 L. Zhu and X. Huang / Relative positions of limit cycles

References

[1] A. Novick and L. Szilard, Science 112 (1950) 715–716.
[2] D. Herbert, R. Elsworth and R.C. Telling, J. Gen. Microbiol. 4 (1956) 601–622.
[3] F.M. Stewart and B.R. Levin, Am. Nat. 107 (1973) 171–198.
[4] S.B. Hsu, S.P. Hubbell and P. Waltman, SIAM J. Appl. Math. 32 (1977) 366–383.
[5] H.L. Smith and P. Waltman, The Theory of the Chemostat (Cambridge University, Cambridge,

UK, 1995).
[6] I.H. Lee, A.G. Frederickson and H.M. Tsuchia, J. Gen. Microbiol. 93 (1976) 204.
[7] A.G. Dorofeev, M.V. Glagolev, T.F. Bondarenko and N.S. Panikov, Microbiology 61 (1992)

33–42.
[8] P.S. Crooke, C.-J. Wei and R.D. Tanner, Chem. Eng. Commun. 6 (1980) 333–339.
[9] P.S. Crooke and R.D. Tanner, Int. J. Eng. Sci. 20 (1982) 439–443.

[10] R. Agrawal, C. Lee, H.C. Lim and D. Ramkrishna, Chem. Eng. Sci. 37 (1982) 453–465.
[11] D. Herbert, in: Recent Progress in Microbiology, ed. G. Tunevall (Almqvist and Wiksell,

Stockholm, 1959) p. 381.
[12] N.S. Panikov, Microbial Growth Kinetics (Chapman and Hall, London, 1995).
[13] S.J. Pirt, Proc. Roy. Soc. B 163 (1965) 224–231.
[14] J. Caperon, Ecology 49 (1968) 866.
[15] M. Droop, J. Phycol. 9 (1973) 264–272.
[16] I.G. Minkevich and V.K. Eroshin, Adv. Modern Biol. (Uspekhi sovremennoy biologii) 82

(1976) 103.
[17] E.O. Powell, in: Continuous Cultivation of Microorganisms, ed. E.O. Powell (H.M. Stationery

Office, Salisbury, 1967) p. 34.
[18] B. Tang and G.S. Wolkowicz, J. Math. Biol. 31 (1992) 1.
[19] H. Veldkamp, Adv. Microb. Ecol. 1 (1977) 59.
[20] A. Matin and H. Veldkamp, J. Gen. Microbiol. 105 (1978) 187–197.
[21] J.B. Clark, in: Developmental Biology of Prokaryotes, ed. J.H. Parish (University of California,

Berkeley and Los Angeles, 1979) p. 73.
[22] S.S. Pilyugin and P. Waltman, Math. Biosci. 182 (2003) 151–166.
[23] X.C. Huang, J. Math. Chem. 5 (1990) 287–296.
[24] Y.Q. Ye, S.L. Wang and X.A. Yang, Am. Math. Soc. Providence, R.I., (1986).
[25] Y. Ilashenko and S. Yakovenko, Trans. Am. Math. Soc. Series, 2, 165 (1995) 21–95.
[26] L. Gavrilov, Invent. Math. 143 (2001) 449–497.
[27] B.Y. Li and Z.F. Zhang, J. Math. Anal. Appl. 190 (2001) 266–271.
[28] R. Roussaire, Bifurcations of Planar Vector Fields and Hilbert’s Sixteen Problem (Springer-

Verlag, New York, 1998).
[29] X.C. Huang, J. Phys. A: Math. Gen. 21 (1988) L685–691.
[30] X.C. Huang and S. Merrill, Math. Biosci. 96 (1989) 47–60.
[31] X.C. Huang and P. Sun, J. Math. Anal. Appl. 184 (1994) 348–359.
[32] Y. Kuang and H.I. Freedman, Math. Biosci. 88 (1988) 67–84.
[33] J. Hofbauer and J.W.-H. So, Math. Biosci. 99 (1990) 71–75.
[34] S.B. Hsu, SIAM J. Appl. Math. 34 (1978) 760–763.
[35] G.S. Wolkowicz and Z. Lu, SIAM J. Appl. Math. 52 (1992) 222–233.
[36] G. Butler and P. Waltman, J. Math. Biol. 12 (1981) 295–310.
[37] R.M. May, Stability and Complexity in Model Ecosystems (Princeton University, Princeton, NJ,

1974).


